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Abstract

Earth System Modeling is one of the primary tools we use to address uncer-
tainties about the future of our climate and planet. But with it comes a daunt-
ing task—addressing the unpredictability in how we, as a planet or society,
respond to the challenge of climate change. There are only a finite num-
ber of supercomputers on Earth capable of running simulations to address
these questions, but an infinite combination of choices within the large n-
dimensional parameter space of climate models. Additionally, running these
simulations is expensive and time-consuming, which is why we turn to cli-
mate model emulators. These machine-learning models take typical Earth
system model input data and learn the outputs based on data generated from
previous climate model runs. These emulators are capable of predicting ev-
erything from spatial distributions of precipitation patterns to global average
temperature over time, making them powerful tools that can help us answer
questions about how particular scenarios of climate change may play out.

Code: https://github.com/zoeludena/ResearchOnClimate
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1 Introduction

1.1 First Look
There are amultitude of future climate scenarios that are possible over the next few decades,
all of which come down to how we address our emissions. While it’s important to under-
stand what a realization of each of these pathways looks like in terms of climate patterns,
it is infeasible to explore each of these scenarios because running climate models requires
a lot of time and resources. As such, we turn to climate model emulators, which can help
us explore the outcome of different emission scenarios at a much quicker rate.

1.2 Prior Work
“ClimateBench v1.0: A Benchmark for Data-Driven Climate Projections” (Watson-Parris
et al. 2022) is the paper we are trying to recreate in Fall 2024. This paper is the first
benchmarking framework that uses a set of baseline machine learning models on an Earth
System Model to emulate the response of different climate variables. This allows people
to predict annual mean global distributions of temperature, diurnal temperature ranges,
and precipitation given a wide range of emissions and concentrations of carbon dioxide,
methane, sulfur dioxide, and black carbon. This allows the baseline models to explore
the unexplored. The paper found the most accurate three baseline models were neural
networks, gaussian processes, and random forests.
The latest UN Intergovernmental Panel on Climate Change (IPCC) Synthesis Report (Inter-
governmental Panel on Climate Change IPCC) is a summary for policymakers that explains
different Shared Socio-economic Pathways (SSPs). The summary also explains observed
changes and impacts, current status and trends, future climate change, risks, and long-
term responses, and responses in the near term. Each one explains who is being affected
the most, the financial struggles, and the ecosystem strains. There are many insightful
figures like Figure SPM.2 Projected changes of annual maximum daily maximum temper-
ature, annual mean total column soil moisture, and annual maximum 1-day precipitation
at global warming levels of 1.5 degrees Celsius, 2 degrees Celsius, 3 degrees Celsius, and 4
degrees Celsius relative to 1850 to 1900. This is directly related to the Climate Bench, as
the paper explores different SSP scenarios (different warming levels).
”Predicting global patterns of long-term climate change from short-term simulations using
machine learning” (Mansfield et al. 2020) is about using model simulations to learn re-
lationships between short-term and long-term temperature responses while reducing the
cost of scenario computations. The researchers analyzed scenario predictions across the
world using ridge regression, gaussian process regression, and pattern scaling. In Fig 3
it appears that Gaussian Process regression had the smallest boxplot of error distribution
around scenario predictions. This relates to the ClimateBench paper because they found
Gaussian Processes were successful predictors (second to Neural Networks).
”Climate model genealogy: Generation CMIP5 and how we got there” (Knutti, Masson
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and Gettelman 2013) is about how models are strongly tied to each other because they
share a common code. CMIP5 supports the idea that models improve over time because
strengths and weaknesses of some models are passed onto newer model versions because
of the exchange of code and ideas. This is important to the ClimateBench argument that
the models are not independent, so a more complex one is not the answer. It will be better
instead to use an emulator for NorESSM2 because they are simpler and will encompass
what the mixed models are attempting to achieve.

1.3 Description of Data
There are two classes of data files that we need for the emulators. After preprocessing,
both will be provided to the various models as input for training, validation, and ultimately
testing. Both of these data files are binary .nc (NetCDF) files, which are essentially multi-
dimensional data structures with “indexes”. In this case, both of the data files are indexed
along “lat” (latitude), “lon” (longitude), and “time”.

• Climate Model Input Data
– “CO2” (Carbon Dioxide) (NOAA Climate.gov 2024). One of Earth’s most im-

portant greenhouse gases because it absorbs and radiates heat. It is a stable
molecule and can remain in the atmosphere for several thousand years.

– “CH4” (Methane) (NASA Climate Change 2024). Second largest contributor to
climate warming after CO2. Methane is a much more potent greenhouse gas,
but has a much shorter half-life of only 8-9 years.

– “SO2” (Sulfur Dioxide) (NASA Earth Observatory 2017). Sulfur dioxide can
react with the atmosphere to form aerosol particles which helps make clouds.
It negatively affects air quality (a critical air pollutant) because it mainly comes
from burning coal (coal-fired power plants). It can also react with water vapor
to form acid rain.

– “BC” (Black Carbon) (Office of Environmental Health Hazard Assessment OE-
HHA). Absorbs light and contributes to climate change by releasing heat energy
into the atmosphere. It is considered a short-lived pollutant. They can cause
greater warming effects than CO2 even with its short lifespan. Are causing
snow, glaciers, and ice to darken and melt.

• Climate Model Output Data
– “dtr” (Diurnal Temperature Range). Diurnal temperature range is calculated

by diurnal temperature range= tasmax− tasmin (the difference between daily
maximum and minimum temperature). Measured in Kelvin.

– “tas” (Surface Air Temperature). Average monthly surface air temperature two
meters above the ground. Measured in Kelvin.

– “pr” (Precipitation). Average monthly precipitation. Measured in millimeters
per day.

– “pr90” (90th percentile of precipitation data). The threshold amount of monthly
precipitation that is exceeded only 10% of the time over a given period. Mea-
sured in millimeters per day.
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2 Methods

2.1 Normalizing the Data
“Normalizing data” means to adjust values from different scales into the same one. This
makes it easier to compare and analyze the data. All of the models started by normaliz-
ing the emission data. More specifically we normalized the carbon dioxide and methane
variables.

2.2 Data Used in Models
In this study, we employed historical data alongside various Shared Socioeconomic Pathway
(SSP) scenarios. Specifically, we utilized SSP 126, SSP 370, and SSP 585 to train ourmodels
and evaluated their performance using SSP 245.
The chosen training scenarios encompass a broad spectrum of potential futures. SSP 126
represents a low-emissions pathway characterized by rapid decarbonization, reduced fossil
fuel dependency, widespread renewable energy adoption, and sustainable land-use prac-
tices. SSP 370 reflects a medium-high emissions trajectory marked by regional self-reliance,
limited climate policy, andmoderate adaptation efforts. SSP 585 describes a high-emissions
scenario driven by delayed or weak climate mitigation, high greenhouse gas emissions,
rapid urbanization, and significant global population growth. This diverse set of training
scenarios allows the models to learn from a wide range of socioeconomic and emissions
conditions, spanning sustainable to high-emissions futures.
For testing, we selected SSP 245, a moderate-emissions scenario. This pathway combines
elements of sustainability and fossil fuel usage with incremental climate policies and un-
even global cooperation. As an intermediate scenario, SSP 245 was not included in the
training set, making it an ideal candidate for evaluation. It provides a realistic and bal-
anced context to assess model performance under conditions that are neither extreme nor
strongly polarized.

2.3 Pattern Scaling
Pattern Scaling Overview The pattern scaling model is the simplest emulator at our dis-
posal. The model consists of many linear regression models trained on global mean temper-
ature in different emission scenarios. These models regress desired variables (precipitation,
diurnal temperature range, etc.) on global mean temperature which is the “scaling” ele-
ment of the model. Once trained, the model takes a vector of global mean temperatures
from a particular emission scenario, and predicts the desired variables using the inputs.
This model is powerful yet simple because it can predict local values of particular variables
using only globally averaged inputs.
Though simple, the pattern scaling model is actually one of the most powerful in terms
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of predictive power. Additionally, it has no hyperparameters, which means no tuning is
necessary for this model. It may be beneficial to try using other types of regression models
(LASSO, Ridge, Elastic-Net), but the test errors are not vastly changed when using them.
The only input needed are the global mean temperatures for the training and test scenarios,
as well as the desired variables from the training scenarios.
However, because it is based on the result of linear regression models, this pattern scaling
emulator can fail to capture non-linear processes, which arise often when dealing with
climate change. Several aspects of the climate are governed by feedback loops, and these
non-linear processes will not be captured well by the pattern-scaling model.

2.4 Gaussian Process
Gaussian Process Overview. A Gaussian Process (GP) model, used in the Climate Bench
paper, is a probabilistic framework ideal for regression and classification tasks. GPs model
functions by defining a prior characterized by a mean function, m(x), representing the
expected value at x , and a covariance function, k(x , x), which measures similarity between
inputs x and x . Using Bayesian inference, GPs update this prior with training data to
produce a posterior distribution. For new inputs, predictions are made as a distribution
with a mean (most likely value) and variance (uncertainty estimate).
GPmodels are well-suited for climate prediction. Climate systems are governed by complex,
smooth, and often nonlinear relationships, which GPs can model through appropriately
chosen kernels. Moreover, their ability to provide uncertainty estimates is invaluable when
working with limited or noisy climate data, as these estimates can highlight regions where
the model is less confident in its predictions. Finally, the interpretability of GPmodels aligns
well with scientific practices, allowing researchers to explore the relationships captured by
the covariance function and gain insights into the modeled climate dynamics.
Using the Model. The GPmodel was created using the esem library (DuncanWatson-Parris
2021a). The esem library has gp_model (DuncanWatson-Parris 2021b), which allows users
to provide training data, specific kernel(s), and a way to combine multiple kernels together.
In the original baseline model there was a different GP model for each variable, so surface
air temperature, precipitation, diurnal temperature range, and 90th quantile of precipita-
tion. For training data X we gave each model leading_historical_inputs, which was a
DataFrame containing normalized carbon dioxide, normalized methane, black carbon mea-
surements, and sulfur dioxide measurements. The training data Y contained the historical
measurements of the different variables and data from SSP 585. The code was simple,
gp_model(leading_historical_inputs, Y[“variable”]), where “variable” is re-
placed with the acronym corresponding to the desired variable. This means the GPs were
using no specific kernel!
Surprisingly, the root mean squared error (RMSE) when comparing the predictions from
the GP models and the true values, from a super computer’s prediction, were low! When
we ran the same experiment using gp_model’s default values we found very similar re-
sults. We found the GP model tended to underpredict the southern hemisphere. It also
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overcompensated at times making places that would have cooler surface air temperatures
warmer.
Hyperparameters. To evaluate the performance of different kernel combinations in Gaus-
sian models, we compared the RMSE values of individual kernels ([”Linear”], [”RBF”],
and [”Polynomial”]), kernel additions, and kernel multiplications.
The original RMSE values for the Gaussian model were:

• tas: 0.8067
• dtr: 0.1806
• pr: 0.6111
• pr90: 1.7520

Individual Kernels The kernel [”RBF”] achieved the lowest RMSE for most metrics, with
notable reductions in dtr (0.1779) and pr (0.6043) compared to the original values. The
[”Polynomial”] kernel performed the worst overall, particularly for tas and pr90.
Kernel Additions Looking at the three kernels and combining different permutations of
them ([”Linear”, ”Polynomial”], [”Linear”, ”RBF”], and [”RBF”, ”Polynomial”])
through addition we were able to see how making the model more complex would affect
the RMSE. The addition of [”Linear”, ”Polynomial”] provided the best overall perfor-
mance closely matching the original model for most metrics:

• tas: 0.8076
• dtr: 0.1821
• pr: 0.6111
• pr90: 1.7520

Kernel Multiplications Looking at the same three models, but this time combined through
multiplicationwewere able to find [”Linear”, ”Polynomial”] performed the best again,
reducing RMSE for tas (0.8303) and pr (0.6314). However, it was slightly less effective
than additive combinations for pr90.
Best Performing Model The combination of [”Linear”, ”Polynomial”] with additive
operations showed themost consistent performance across all metrics, achieving values very
close to the original Gaussian model while minimizing deviations.

2.5 Random Forest
Random Forest Overview. Random Forest is an ensemble method that aggregates the pre-
dictions of multiple decision trees to enhance predictive performance. Decision trees, as the
base models, are particularly effective at capturing non-linear relationships and interactions
between variables but are prone to overfitting. Random Forest addresses this limitation by
averaging the predictions of all individual trees, which reduces variance and increases ro-
bustness. This makes it well-suited for climate model emulation, where separate models
are often developed for multiple target variables.
One key advantage of Random Forest in climate model emulation is its interpretability,
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which aids in informing decision-making. While a common drawback of Random Forest
is its inability to extrapolate beyond the range of training data, this is not a significant
concern in this context. Relevant predictions in climate modeling typically lie within the
range defined by historical climate data and plausible scenarios, such as the low-emissions
SSP126 and high-emissions SSP585 pathways. This makes Random Forest an effective and
practical choice for emulating climate models.
Features and Hyperparameters. The features for all four models consist of the first five
principal components of SO2 and BC, CO2, and CH4. For hyperparameters, max_features
was changed from ‘auto’ to ‘sqrt’ to accommodate a different version of rf_model
while achieving a similar result. The rest of the hyperparameters are kept unchanged from
the original paper, tuned using random search of the training data without replacement
(Table 1).

Table 1: Hyperparameters for Random Forest Models
Model n_estimators min_samples_split min_samples_leaf max_depth
rf_tas 250 5 7 5
rf_pr 150 15 8 40
rf_pr90 250 15 12 25
rf_dtr 300 10 12 20

3 Results
To evaluate the emulator’s performance, we calculated the root mean square error between
the emulator projection and the climate model projection. Subsequently, we plot the true
and the emulated projections side-by-side for each target variable. The results are overall
promising with the RMSE scores being relatively low (Table 2) and the patterns in the
figures matching (Figure 3).

Table 2: Root Mean Square Error (RMSE) for Emulated Results Compared to Climate Model
Projections. Let RF be Random Forest, GP be Gaussian Process, and PS be Pattern Scaling.

Variable PS GP RF
tas (Near-Surface Air Temperature) 0.3648 0.8076 0.6823
dtr (Diurnal Temperature Range) 0.1503 0.1821 0.1654
pr (Precipitation) 0.5275 0.6905 0.6111
pr90 (90th Percentile of Precipitation) 1.5322 1.7520 1.5880
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Figure 1: Climate model projection vs. Pattern Scaling model projection for Near-Surface
Air Temperature in 2050.

Figure 2: Climate model projection vs. Gaussian Process model projection for Near-Surface
Air Temperature in 2050.

Figure 3: Climate model projection vs. Random Forest projection for Near-Surface Air
Temperature in 2050.
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4 Discussion

4.1 Pattern Scaling
Base-lining. The pattern scaling model’s performance is among the best relative to the
other emulators, even though it is only based on a series of linear regressions. This is an
interesting observation because there are a lot of non-linear processes that go into future cli-
mate predictions, but this may be more indicative that the climate models used for training
do not predict or capture many non-linear relationships.
Advantages and Drawbacks. Its simple structure and moderately good performance mean
that the pattern-scaling model is a reliable baseline to which we can compare the other
emulators. We can use this information to make decisions about whether or not more
tuning is required of the hyper-parameters for a particular emulator. Still, this model is
limited by its inability to capture nonlinear relationships. If nonlinear relationships are
present in different climate model runs, then we can expect the error for pattern scaling
models to be a bit worse than what we are observing right now.
Different Regressions. As a good extension of this linear model, we can explore the value
of using different regression models to train the pattern scaling model in more depth. In
particular, tuning the parameters for a different linear model may be interesting to see if
we can get even more significant reductions in the error.

4.2 Gaussian Process
Impact and Applicability. Our Gaussian Process (GP) model is pretty close to the more
intensive truth. This precision enables researchers and policymakers to simulate diverse
”what-if” scenarios, reflecting a range of possible futures. For instance, GP models can be
instrumental in studying Shared Socioeconomic Pathways (SSPs), facilitating robust pre-
dictions and analyses of climate outcomes under varying socioeconomic and environmental
trajectories.
Limitations. As shown in Figure 2, the GP model tends to underpredict the truth. This
limitation is probably due to the limited size of the training dataset, which constrains the
model’s ability to fully capture the complexities of the true system. Additionally, while our
model incorporates hyperparameter tuning, the exploration was restricted to three kernels
and their basic combinations. A more extensive search over hyperparameter spaces and
kernel combinations could improve the model’s predictive accuracy. Providing larger and
more diverse datasets would further enhance its performance.
Future Work. Future research should explore a broader range of kernels, more sophisti-
cated kernel combinations, and advanced hyperparameter optimization techniques, such as
Bayesian optimization or grid search. Expanding the training dataset and incorporating ad-
ditional features could also improve the model’s generalizability and accuracy in capturing
complex climate dynamics.
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4.3 Random Forest

Figure 4: Feature Importance for Random Forest models.

Feature Importance. As we can observe in Figure 4, CO2 is the most important feature
in the four models, followed by CH4, the first principal component of SO2, and the second
principal component of BC. This aligns with our expectations. CO2 is the most prevalent
greenhouse gas and plays an important role in climate change. CH4, although more potent,
is slightly less prevalent in the atmosphere (U.S. Environmental Protection Agency 2024).
Impact and Applicability. One main advantage of using the Random Forest emulator is
the interpretability of the results, in contrast to some ”black-box” models. A “black-box”
model is an input-output model based on data that hides its internal workings. Being able
to interpret the Random Forest model allows researchers to better inform policy makers
when addressing climate change.
Limitations. An overall pattern of under-prediction can be observed for all four target
variables, as shown in Figure 3. The random forest models likely underpredict due to their
bias toward the mean, under representation of high target values in the training data, or
insufficient modeling of spatial and temporal dependencies. Adjusting hyperparameters,
improving features or using methods better suited to extremes could help.
Future Work. Future attempts of using random forest models to emulate climate mod-
els should try to address the issue of underprediction. Future attempts can also try more
combinations of features, following the insights on feature importance presented above.
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5 Conclusion
This study demonstrates the potential of machine learning emulators in addressing the com-
putational challenges of exploring large climate model parameter spaces. By employing
Pattern Scaling, Gaussian Processes, and Random Forest models, we effectively replicated
key climate variables, including surface air temperature, precipitation, diurnal tempera-
ture range, and extreme precipitation percentiles. Among the tested methods, the Pattern
Scaling model worked the best (as it had the lowest RMSE)!
Despite promising results, limitations in model accuracy, particularly in underpredicting ex-
treme values and southern hemisphere temperatures, highlight the need for larger datasets
and advanced tuning methods. Future work should focus on exploring richer datasets and
robust hyperparameter optimization techniques. These enhancements could significantly
improve emulator accuracy and adaptability, providing more precise insights into Shared
Socioeconomic Pathways and their implications for future climate scenarios.
The findings highlight the transformative role of emulators in climate science, enabling
broader access to predictive tools, and facilitating informed policymaking. As climate chal-
lenges intensify, such computational advancements will be indispensable for timely and
actionable responses to global climate uncertainties.
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A.1 Additional Figures

Figure A 1: Climate model projection vs. Pattern Scaling model projection for Diurnal
Temperature Range.

Figure A 2: Climate model projection vs. Pattern Scaling model projection for Precipitation.

Figure A 3: Climate model projection vs. Pattern Scaling model projection for Precipitation
90th percentile.
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Figure A 4: Climate model projection vs. Gaussian Process model projection for Diurnal
Temperature Range.

Figure A 5: Climate model projection vs. Gaussian Process model projection for Precipita-
tion.

Figure A 6: Climate model projection vs. Gaussian Process model projection for Precipita-
tion 90th percentile.
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Figure A 7: Climatemodel projection vs. Random Forest projection for Diurnal Temperature
Range.

Figure A 8: Climate model projection vs. Random Forest projection for Precipitation.

Figure A 9: Climate model projection vs. Random Forest projection for 90th Percentile
Precipitation.
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